[易读易懂] 骑士游历算法 Knight's Tour Problem

本文介绍了骑士游历问题,即在N*M棋盘上,骑士如何不重复遍历所有格子。通过深度优先搜索(DFS)和回溯法进行求解。详细讲解了算法思路,并提供了Java代码实现,展示3*3棋盘的解决方案。
摘要由CSDN通过智能技术生成

1、问题描述

在一个N*M的棋盘上,在任意位置放置一个骑士,骑士的走"日字",和象棋中的马一样。

问该骑士能否不重复遍历整个棋盘。下面的方法本质还是穷举,所以就写成可以计算出共有多少种不同的遍历方法。

2、分析与思路

根据题意,骑士走的下一步可能在棋盘上有多种选择(最多8种),需要选择1种,然后继续走下去,直到无处可走。

无处可走时有两种情况:

情况一:成功完成了遍历,那么接下来就通过回溯(回到上一步的位置,重新选择下一步的位置),寻找其他的走法。

情况二:未完成遍历,接下来还是要通过回溯继续寻找能够完成遍历的走法。

以上可以知这是一个DFS(深度优先搜索)问题,并且需要回溯。

3、代码(Java版)

算法可以统计出共有多少中不同的遍历方法,以及多少种失败的尝试。并可以给出每次无法前进时棋盘的状态和每步走法。

/*
 * Quesion: Kight's tour in n*m board  骑士(棋盘上走日字)游历问题,n*m棋盘,从角出发,能否不重复的遍历整个棋盘,有几种不同的遍历方法
 * Author: Mingshan Jia
 * Date: 2018/4/16
 * */
/* 
 *┼——┼——┼——┼——┼——┼  
 *│  │ 4│  │5 │  │  
 *┼——┼——┼——┼——┼——┼  
 *│ 3│  │  │  │6 │       
 *┼——┼——┼——┼——┼——┼  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值